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A B S T R A C T

Background and aims: In this work, breath samples rom clinically stable bronchiectasis patients with and without
bronchial inections by Pseudomonas Aeruginosa- PA) were collected and chemically analysed to determine i they
have clinical value in the monitoring o these patients.
Materials and methods: A cohort was recruited inviting bronchiectasis patients (25) and controls (9). Among the
ormer group, 12 members were suering PA inection. Breath samples were collected in Tedlar bags and
analyzed by e-nose and Gas Chromatography-Mass Spectrometry (GC-MS). The obtained data were analyzed by
chemometric methods to determine their discriminant power in regards to their health condition. Results were
evaluated with blind samples.
Results: Breath analysis by electronic nose successully separated the three groups with an overall classication
rate o 84% or the three-class classication problem. The best discrimination was obtained between control and
bronchiectasis with PA inection samples 100% (CI95%: 84–100%) on external validation and the results were
conrmed by permutation tests. The discrimination analysis by GC-MS provided good results but did not reach
proper statistical signicance ater a permutation test.
Conclusions: Breath sample analysis by electronic nose ollowed by proper predictive models successully
dierentiated between control, Bronchiectasis and Bronchiectasis PA samples.

1. Introduction

The potential advantages o breath analysis or volatolomics studies,
including the unlimited sample supply, the non-invasive way to collect
samples, and the possibility deliver ast analysis results have been
described in several previous works [1–7]. However, despite the abun-
dant literature, the use o breath analysis or clinical applications is in its
inancy [8,9] and the lack o standardization on sample collection/
analysis [10–13] and the complexity o data analysis step leave space to
urther developments [14–18].

In breath analysis, there are dierent types o conounding actors
and the most important are the clinical (gender, age, diet, medication)
and instrumental ones (time o the measurements, time rom collection
until analysis). A good design is essential to handle conounding actors

and methods as randomization, restriction, or matching [19] can be
used. Appropriate control o the clinical and instrumental conounding
actors on observational studies in breath analysis could improve and
decrease biased results [20–22].

On the other hand, there are a variety o instrumental techniques or
breath analysis that dier on usability, cost, and retrieved chemical
inormation: namely, GCxGC-MS [23], chemical sensor systems [24],
Proton Transer Reaction-Mass Spectrometry (PTR-MS) [25], Selected
Ion Flow Tube-Mass Spectrometry (SIFT-MS) [26], Laser Spectroscopy
[27] or Gas Chromatography -Ion Mobility Spectrometry (GC-IMS) [28].

Among the several analytical platorms available to analyse breath
samples a review on cancer detection mentions that GC-MS and e-nose
are the most commonly used platorms (47% and 26% o papers), while
their simultaneous use on the same samples appears only in 8% o the
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studies [29]. The use o two (or more) analytical distinct platorms
[30,31] on the same samples or conront the results rom breath analysis
with another type o sample (as tissue/ sputum) [32–34] are an inter-
esting avenue o research in breath analysis and can be used to conrm
somehow the obtained results.

As said the raw data provided by dierent analytical platorms dier
in inormation content but also on dimensionality and data processing
needs. E-noses and GC-MS datasets, particularly, are represented as a
vector and a matrix, or one sample, and as a matrix and a three-way
array or the whole dataset, respectively. In general terms, GC-MS pro-
vides higher dimensional and richer inormation data, at the expense o
requiring a more complex data processing pipeline [35].

Proper validation methodologies help to avoid overtting and
consequently reduce alse discoveries [36–38]. Overtting problems in
GC/MS are aggravated by the curse o dimensionality [39], because
these datasets are highly dimensional (102–103 detected analytes) and
most studies have limited sample size (20–100 subjects). In this context,
we advocate the use o resampling methods or model optimization and
external validation or perormance assessment [40,41]. We have to
remind that or small datasets, all samples can be used or external
validation using double cross-validation methodologies [42]. Even i
external validation is unbiased, small sample datasets do still eature
perormance estimators with large variance and a permutation test
should be used to conrm the obtained results [43].

In the last decade, a number o VOCs in breath have been ound to be
helpul in the diagnostics o several diseases including respiratory dis-
eases and cancer [5,44–46] Among the several diseases that can be
evaluated by breath analysis the development o bronchial inections on
bronchiectasis patients has been described and evaluated by previous
work. In this case, electronic nose has been used to identiy airway
bacterial colonization in Chronic Obstructive Pulmonary Disease
(COPD) patients [47,48]. Furthermore, e-nose technology has been
proven successul to identiy Pseudomonas aeruginosa inection in bron-
chiectasis [49].

In the clinical stability phase the presence o potential pathogens
bacteria in the airway o bronchiectasis patients are common (30–70%)
being mainly Pseudomonas aeruginosa [50]. Furthermore, aggravations
as aster lung unction loss, pulmonary and systemic infammation are
serious concerns. Bronchial inection is the reason or 60–70% o these
aggravations [51], that has a direct relation with mortality increase in
Bronchiectasis [52] and the reasons why bronchiectasis patients are
more susceptible to developing a bronchial inection are still unknown.

In this work, we build upon previous works to test the adequacy o
breath sampling to monitor inections in bronchiectasis patients,
particularly with Pseudomonas aeruginosa. Previous studies have re-
ported success on e-nose applications using linear discriminant analysis
and leave-one-out internal validation. In this new study, we amplied

the nds collecting a new group o samples and using external validation
methodologies and permutations test. Additionally, the same samples
collected were also analyzed by GC-MS aiming to understand, i
possible, the origin o the chemical discrimination already proven by e-
noses and discuss the advantages and disadvantages o these distinct
analytical platorms on breath analysis. In act, prior studies using GC-
MS have ound VOCs related to the presence o Pseudomonas Aerugi-
nosa (PA) in cystic brosis patients: methyl thiocyanate [53] and 2-ami-
noacetophenone [54] have been reported as putative biomarkers. In this
work, a volatolomics untargeted approach is proposed to discover po-
tential signatures o PA inection in Bronchiectasis patients.

2. Methods

A schematic representation o the applied methodology can be
observed in Fig. 1. This research eatures parallel analysis o breath
samples by electronic nose and GC/MS. The ollowing sections provide
methodological inormation.

2.1. Cohort selection and experimental design

Observational studies are always suspect o bias. In order to block
potential conounding actors, we carried out a proper experimental
design. To prevent gender as a conounding actor a restriction strategy
was applied. It is known that in non-cystic brosis bronchiectasis has
more prevalence among emales than among males. Additionally, e-
males suer more severe diseases and with worse prognoses in terms o
poorer lung unction and survival [55]. For these reasons, only emales
were included in the cohort.

Breath samples rom woman subjects were collected, all o them
were not currently smokers and the ones with prescribed drugs therapies
were asked to stop medication 1 day beore sample collection and ood-
drink intake at least 12 h beore. All patients signed the inormed con-
sent orm to participate in the study (Ethical approvement code: Institut
d’Investigació Biomédica Sant Pau- IIBSP-PRI-2018-105). Diagnosis o
Bronchiectasis was perormed according to current European guidelines
[56]. Bronchial inection was determined using a quantitative sputum
culture prior to breath samples collection. PA inection was diagnosed
using sputum culture that was not perormed in healthy controls because
PA only aects patients with pulmonary diseases who had chronic
sputum production [50]. The procedure used to diagnose PA was well
validated and previously described [57], besides that no other patho-
gens dierently o PA were detected. Bacterial colonization was
considered when patients had PA inection and clinical stability, dened
by the absence o increased symptoms that required changes in baseline
treatment during 4 weeks [57].

To block instrumental shits oten ound in e-noses [37] and even in

Fig. 1. Overview o sample collection and analysis.
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GC-MS, we matched the collection and analysis o samples belonging to
the dierent groups as depicted in Fig. 2. Supplementary Material 1
shows specic inormation or the subjects in the study.

2.2. Breath sample collection

Three liters Tedlar® bags were used to collect the total amount o
exhaled air by the patients. Two-valve Tedlar® bags were cleaned beore
use by fushing with argon and baking at 45 ◦C during 15 min (repeated
three times) [58]. All samples were collected in the same room ater the
patients breathing through a Hans-Rudolph valve during 3 min as
described in previous work [49]. Also, a biological lter was used or
each patient to avoid pathogens entering the bags and cross contami-
nation between patients.

Samples were collected in the hospital and e-nose measurements
were done a ewminutes ater the patients lled the bags. Then, the bags
were carried out to the laboratory and analyzed on the same day o
sample collection by GC-MS. For each day o sample collection, ambient
air, controls, and cases samples were collected. The nal sample set
analyzed consisted o 8 ambient air samples, 9 Controls (healthy
women), 13 bronchiectasis patients (Bronch), and 12 bronchiectasis
subjects with bronchial inection by Pseudomonas aeruginosa (Bro_PA).

2.3. Sample analysis

2.3.1. E-nose
The e-nose device Cyranose 320® (Smith Detections, Pasadena, CA),

that eatures a nanocomposite sensor array with 32 sensors, was con-
nected to the breath Tedlar bag or 5 min and each measurement con-
sisted o 5 replicates. Nitrogen was used as carrier gas and a constant
fow rate o 120 mL/min was used during 60 s and 40 s or baseline
recording and sample analysis, respectively, ollowed by an increase o
the fow or 180mL/min or sample line purging and air intake. A Tedlar
bag with ambient air collected in the day o sample analysis was ana-
lysed in parallel every day as background measurement. Supplementary
Materials shows actual pictures o the breath sampling process (Figure 2
in supplementary materials.)

2.3.2. Gas chromatography
Solid phase micro extraction (SPME) sample preconcentration was

carried out using a 75 µm carboxen®/ Polydimethylsiloxane (CAR/
PDMS) ber [59]. The ber was exposed inside the bags or 30 min at
ambient temperature and immediately ater it was desorbed into the GC

injector. The chromatographic column used was type DB-624 (60 m ×
0.320 mmID × 1.8µm – Agilent). The temperature o the column was
maintained at 40 ◦C or 2 min and then subjected to a temperature ramp
o 10 ◦C/min till 250 ◦C and stayed at this temperature or 5 additional
minutes. The carrier gas used was helium in a constant fow o 1.7 mL
min1. The temperatures o the injector and the transer line were set to
250 ◦C and 230 ◦C, respectively. Ion source temperature was set to
200 ◦C and the mass scan range was rom 40 to 400 m/z.

2.4. Data analysis

2.4.1. E-nose
A non-linear transormation (arctangent transormation) was used to

improve data gaussianity [60]. Data normality was then conrmed with
the Shapiro-Wilk test at the 5% risk with Benjamini-Hochberg multitest
correction [61]. Variance o inter-replicates or each sample and robust
PCA [62] was used or outlier detection. Specically, the algorithm
ROBPCA (available in the rospca package in R) was used and outliers
were selected based on the robust score distance and the robust
orthogonal distance. Proper cuto values or those statistics are given by
Hubert et al. [63]. Ater outlier removal, data was autoscaled and
inspected by classical PCA.

Subject classication was based on the K-NN algorithm (available in
the class package in R [64]) plus a majority voting over the replicate
measurements. K-NN classier optimization and perormance assess-
ment were based on double cross-validation [42] using leave one subject
out (LOSO). By LOSO we mean that all the replicate measurements rom
the same subject are treated as a single indicator to decide the nal label
given to the subject. In the inner loop (internal validation) the number o
neighbors was optimized, while perormance assessment was carried out
in the external loop (external validation). In both cases, the chosen
gure omerit was classication accuracy (classication rate: CR). Final
class assignment to each subject was based on the joint classication o
all the replicates through a voting mechanism. To check that the ob-
tained value cannot be obtained by random choice (null hypothesis) we
calculated a permutations test [65] with 500 iterations. Supplementary
Material 3 shows a block diagram o the e-nose data analysis (Figure 3 in
supplementary materials.)

2.4.2. Gas chromatography
Features rom the raw chromatograms were extracted using the

XCMS package in R [66,67]. On XCMS matched lter algorithm was
used or peak detection ollowed by peak clustering and alignment. Data

Fig. 2. Distribution o cases, controls, and quality controls samples between the days o collection.
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imputation was used to ll missing values based on the integration o the
peak position. Robust Principal component analysis (RobPCA) was used
to explore the data and veriy the presence o outliers in the same
manner described above.

The extracted eatures were then corrected using log transormation
and PQN normalization [68]. The AlpsNMR package [69] was used to
create Partial Least Squares – Discriminant Analysis (PLS-DA) [70]
classication models ollowed by permutations test. Furthermore, a
second strategy was used applying variable selection based on Wilcoxon
and binary problems were built using the same strategy applied to the e-
nose data (double cross-validation [42] using leave one subject out
(LOSO)), and PLS-DA and KNNmodels were built. All data analysis or e-
nose and GC-MS was done in RStudio 4.0.3.

3. Results

3.1. E-nose analysis

E-nose analysis aim is to record a breath-print o a wide range o
gases and vapours (mixture o compounds) present in each breath
sample not ocusing on a specic compound or class o compounds, in
the case o Cyranose 320® this is done by 32 nanocomposite sensor
arrays. Each patient breath measurement is represented as a matrix,
having 32 columns, one per sensor, and as many rows as replicates have
been measured (typically ve). Supplementary Material 4 shows a
heatmap where on rows is showed the dierent replicates o each pa-
tient and in the columns the sensors. The colors correspond to the value
o the sensor’s response ater preprocessing. The rows are arranged ac-
cording to the class o the patient and the columns are ordered according
to hierarchical clustering o the sensor responses. Ater the non-linear
transormation, all sensors except numbers 6 and 28 were normally
distributed and we could not reject the null hypothesis o a normal
distribution using the Shapiro-Wilk hypothesis test with Benjamini-
Hochberg multitest correction. Three entire samples (including all rep-
licates) were considered outliers (see methods) and were removed rom
the dataset beore the construction o the models. Ater preprocessing,
data were visually inspected by PCA and the score plot (PC1xPC2) is
shown in Fig. 3. No clear data separation was observed at this point.

The best number o neighbors k (optimized in the internal validation
loop), the values o classication rates (in external validation), and the
p-value ater permutation tests or all constructed models are showed in
Table 1 (including three class and two class models). Furthermore,
Supplementary Material 5 shows the conusion matrix or the three class
K-NN models.

3.2. Gas chromatographic analysis

The application o XCMS to the raw data provided a eature table

with dimensions 42 samples × 409 eatures. The outlier detection step
did not show any anomalous sample and all subjects were kept in the
data set. The Total Ion Chromatograms (TICs) in log scale or the GC-MS
analysis or all collected samples and the outlier detection step plot are
shown on Supplementary Material 6(i) and 6(ii).

Fig. 4 (i) shows the score plots o a PLS-DA model or a binary
classication problem. However, it is well known that scoreplots are
overoptimistic. In this spirit, we gave better credit to the evaluation o
the classiers in external validation. The best results were obtained or
the discrimination between Control versus Bronchiectasis_PA. PLS-DA
models presented good classication rates above 0.75 on external vali-
dation. However, permutation tests were applied or all binary PLS-DA
models, and it was not possible to reject the null hypothesis (see Fig. 4
(ii)).

Table 2 shows a summary o the obtained results or the GC-MS ater
eature selection applying Wilcoxon test (binary models) and then
applying the same strategy used to the e-nose (double cross-validation
using leave one subject out).

The last step on an untargeted approach is the compound identi-
cation and although several important compounds were already iden-
tied and described as potential to be related with specic diseases on
breath samples [71,72] the untargeted methodology used here was not
able to reach the annotation step, in other words, even though some PLS-
DA presented good results neither model was able to overcome per-
mutations tests or statistical signicance.

4. Discussion

4.1. Sample collection and analysis

Breath samples can be collected and analyzed online and ofine, the
main reason or choosing one or another method will depend on the nal
aim o the work. Although, analyzing breath directly and the use o
cartridges are preerential or e-nose and GC-MS, respectively, Tedlar®
bags ts very well when the objective is to analyze the same sample with
two or more analytical platorm [58]. Furthermore, when a patient has a
pulmonary disability, identiying and collecting the end-tidal breath it is
not a simple task and or this reason and, to ollow the same protocol or
all involved subjects in the study, whole breath samples were collected

Fig. 3. Score plot or the Principal Component Analysis (PC1xPC2) containing
all samples rom the e-nose measurements.

Table 1
Summary o the KNN models perormance in external validation or the e-nose
dataset (condence limits 95% in brackets, calculated according to the binomial
distribution).

All replicates

Models best
k

Sensitivity Specicity CR(%) p-
value

Control vs
Bronch vs
Bro_PA

7 – – 78 0.002

Control vs
Bronch

7 0.86
(0.73,0.92)

0.9
(0.76,0.96)

89(84,96) 0.002

Control vs
Bro_PA

5 0.94
(0.82,0.97)

0.9
(0.76,0.96)

92(83,95) 0.004

Bronch vs
Bro_PA

5 0.86
(0.71,0.92)

0.92
(0.83,0.97)

89(81,93) 0.002

Majority vote
Models best

k
Sensitivity Specicity CR (%) p-

value
Control vs
Bronch vs
Bro_PA

7 – – 84 0.002

Control vs
Bronch

7 0.92
(0.64,1.00)

1(0.66,1.00) 95
(77,100)

0.002

Control vs
Bro_PA

5 1(0.75,1.00) 1(0.66,1.00) 100
(84,100)

0.004

Bronch vs
Bro_PA

5 0.75
(0.43–0.95)

1(0.74,1.00) 87(69,97) 0.002

L.F. Oliveira et al.
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and the methodology was previous validated [49].
Furthermore, the CAR/PDMS ber and the column selected possess

intrinsic characteristics that will allow the pre-concentration and anal-
ysis o a delineated group o compounds presented in breath samples
analyzed by GC-MS. However, the preconcentration step is mandatory
since many compounds will be present in very low concentrations inside
the bags mainly when whole breath samples are collected as in this
work. Breath sampling methodologies, advantages, and disadvantages
are described in the literature [73].

4.2. E-nose analysis

Initial visual inspection o the sensor response distribution indicated
a strong lack o normality. The histogram presented long right-side tails
but also the presence o negative values. This is known to have a
negative eect on data analysis techniques based on the analysis o
variance. Data normality was greatly improved using a non-linear
transormation. To be able to deal with negative values we selected
the arctangent transormation instead o the most common logarithmic
transorm.

It is possible to observe that samples do not appear linearly separable
in an unsupervised exploration based on the PCA scoreplot (Fig. 3). K-
NN and PLS-DA classiers were evaluated. PLS-DA is one o the most
common classiers in metabolomics, but it provides only linear parti-
tions o the input space. To test a more fexible input space partition K-
NN models were chosen as a simple an model-ree alternative. All K-NN
models constructed or the e-nose dataset presented better results than
the PLS-DA ones and or this reason, only the KNN results are shown.

The classication rates were calculated using two dierent ap-
proaches. First, considering each individual replicates and second using
the most voted class using all replicates rom the same individual. This
last procedure does not represent in act additional costs since all the
replicates are just consecutive analyses rom the same bag as explained
in Section 2.4.1. Using all the replicates approach signicantly improved
the perormance o the classier, except in the case o the three-class
problem.

When trying to classiy individual measurements, K-NN models
presented very good classication rates on external validation, and the
values varied between 78% and 92%. Permutation tests were used or all
models and in all cases, the classication rates were considered statis-
tically signicant (risk level 0.05) compared with the distribution o the
null hypothesis. The three-class problem resulted in a smaller CR (78%)
but still statistically signicant. For all the other binary problems the CR
ranged between 89 and 92%, but those dierences were not statistically
signicant due to the limited cardinality o the dierent groups.

Results improved signicantly when we used the majority vote
mechanism to classiy a subject using the ve consecutive replicates. In
this case, the CR or the three-class problem improved up to 84%, while
we got perect classication (100)% or the Control vs Bronchiectasis
with PA inection. The next model in terms o good perormance was the
discrimination between Controls and Bronchiectasis, while the presence
o PA inection in Bronchiectasis perormed a bit lower but still with an
excellent 87% classication rate. In general, models presented better
specicity than sensitivity, however, the latter still ranged rom 92% to
100% (see Table 1).

The current study indicates that the e-nose was able to classiy the
breath samples not only in internal validation as previously described
but also in external validation. Furthermore, the class separation is not
linear requiring non-linear decision unctions to obtain good results.
While these results are encouraging, they should be urther validated
with more subjects (due to the risk o over adjustment related with the
small sample conditions), during a longer study, and eventually in a
multicenter study. It should be independently tested with additional e-
nose units. Another direction o study is to investigate i this very good
separation is specic to the sensing technology used with the presently
used device or i they can be replicated with electronic noses o dierent
technologies.

4.3. Gas chromatographic analysis

While the score plot shows a good separation between the two
studied classes, we have to take into account that PLS-DA score plots are
easily overoptimistic [36,74]. Additionally, the apparent good result in
classication rate is unable to overcome the additional permutation test
due to the large variance o the CR estimator probably linked to the
small number o samples compared to the input data dimensionality.

Regarding the second strategy applied (Table 2), these results agree
with the obtained results or the e-nose in the sense that KNN models
presented a better perormance than PLS-DA (exception or the Control
vs Bro_PA). However, in this work, all the predictive models constructed
or the GC-MS data the classication rates were not good enough to
distinguish between the classes, and consequently it was not possible to

Fig. 4. (i) Scoreplot PLS-DA model obtained rom alpsNMR using as class Control versus Bronchiectasis_PA (ii) permutation test or the predictive model.

Table 2
Summary o results obtained or the GC-MS ater eature selection applying
Wilcoxon test (binary models).

PLS-DA KNN
Number of selected features CR (%) CR (%)

Control vs Bronch 39 40 62
Control vs Bro_PA 42 62 52
Bronch vs Bro_PA 13 48 58
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discover the compounds that are important to class separation.
It is interesting to conront the successul results o the predictive

models built with the e-nose measurements in opposition to the ailure
obtained using GC-MS data. We can point several underlying reasons
behind these results. First, the e-nose measurements have replicates (5
per sample) while a single GC/MS analysis is carried out per bag. Sec-
ondly and as expected, the dimensionality o the e-nose is much smaller
than the GC-MS leading to curse o dimensionality problems. This is
more important when acing binary problems (or the GC-MS) since the
sample count is even smaller.

Furthermore, the signal processing pipeline or GC-MS is more
complex than or e-nose data. The large number o peaks, sometimes
with strong coelution, baseline instabilities, and slight shits in retention
time leading to alignment problems, makes the whole data processing
workfow a real challenge, particularly i in addition we have a limited
supply o examples or the machine learning step. This is in agreement
with previous research that combined GC-MS and e-nose analysis on the
same samples or cancer screening [75,76]. The GC-MS results obtained
in this study sign that, even though the use o experimental design and
good analytical chemistry practices are essential, good validations
techniques in the development o the models are key to avoiding alse
discoveries in complex data.

5. Conclusions

This study showed that e-noses were able to dierentiate bronchi-
ectasis and bronchiectasis with bronchial inections, produced by pseu-
domonas aeruginosa, patients rom controls with good results in external
validation and the results were conrmed by permutation tests.

We would like to highlight a number o methodological actors that
support the results and the validity o the conclusions. First, the proper
experimental design to block the most important conounding actors.
Second, the evaluation o the predictive models in external validation
using double leave one subject out and the additional permutation tests
to explore i the obtained results can just be obtained due to the large
variance o perormance estimators in small sample conditions. Results
or e-nose improved signicantly ater non-linear signal transormation,
and the use o majority voting over measurement replicates.

The use o GC-MS to explore the important compounds or the class
dierentiation was not successul. The main reasons or that were the
small sample counting, the lack o replicates and the complexity o the
obtained signals. We consider that more strict validation methodologies
should be in use to avoid alse discoveries in breath analysis.

Despite the good results obtained by electronic nose, the act that this
approach does not allow to identiy condition specic compounds is a
clear limitation o this approach since it does not bring additional in-
ormation or the understanding o the underlying mechanisms below
the observed discrimination.

The obtained results should be considered as a positive indication
supporting the validity o the proposed methodology. However, studies
with larger cohorts, rom dierent geographical areas and recruitment
hospitals are needed to give additional support to the ndings reported
in this work.
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[38] R. Rodríguez-Pérez, M. Padilla, S. Marco, The need o external validation or
metabolomics predictive models, in: R. Cumeras, X. Correig (Eds.), Volatile Org.
Compd. Anal. Biomed. Diagnosis Appl, rst ed.,, Apple Academic Press, Boca
Raton, 2018, pp. 197–223, https://doi.org/10.1201/9780429433580-8.

[39] D.L. Donoho, The Curses and Blessings o Dimensionality, in: Am. Math. Soc. Lect.
Challenges 21st Century, Los Angeles, 2000: pp. 1–33. https://www.dl.icdst.org/
pds/les/236e636d7629c1a53e6ed4cce1019b6e.pd (accessed November 8,
2017).

[40] N. Fens, A.C. Roldaan, M.P. van der Schee, R.J. Boksem, A.H. Zwinderman, E.
H. Bel, P.J. Sterk, External validation o exhaled breath proling using an
electronic nose in the discrimination o asthma with xed airways obstruction and
chronic obstructive pulmonary disease, Clin. Exp. Allergy 41 (10) (2011)
1371–1378, https://doi.org/10.1111/j.1365-2222.2011.03800.x.

[41] M. Schumacher, N. Holländer, W. Sauerbrei, Resampling and cross-validation
techniques: a tool to reduce bias caused by model building? Stat. Med. 16 (1997)
2813–2827, https://doi.org/10.1002/(SICI)1097-0258(19971230)16:24<2813::
AID-SIM701>3.0.CO;2-Z.

[42] P. Filzmoser, B. Liebmann, K. Varmuza, Repeated double cross validation,
J. Chemom. (2009) 160–171, https://doi.org/10.1002/cem.1225.

[43] F. Lindgren, B. Hansen, W. Karcher, M. Sjöström, L. Eriksson, Model validation by
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